
GRASPING
WEBSPHERE
LIBERTY
-
A deep dive into
IBM WebSphere Liberty
and its possibilities

Technical Whitepaper

p2

TABLE OF
CONTENTS

Chapter 1 - Liberty as we know it

Chapter 2 - Liberty at its core

Chapter 3 - Liberty today

Chapter 4 - Closing notes

1. History

2.

3. Use cases

4. Closing notes

1.1 Software family p4

p4

p9

p28

p9

p29

p10

p30

p16

p31

p33

p17

p31

p34

p19

p19

p20

p22

2.1 Liberty’s purpose

3.1 Containers

4.1 Notes on the future of Java and Liberty

1.2 Introduction

2.2 Evolution to an open project

3.2 Pak’ed up

4.2 About the author

2.3 Flexible and modular configuration

3.3 Buildpacks

2.4 Stability

3.4 Pipeline integrations

2.5 Agility and reactivity

3.5 Integration with existing software

2.6 Security

2.7 Upgrades and migrations

2.8 Cloud-native

2.9 Troubleshooting

Core concepts
and capabilities

p3

CHAPTER 1
-
LIBERTY AS
WE KNOW IT

p4

1. History
1.1 Software family

1.2 Introduction
1.2.1 Prologue

IBM WebSphere, first introduced in 1988, is a suite of enterprise products enabling businesses
to create, manage and integrate enterprise applications. Over time this software family has
evolved beyond its original scope through ever-evolving business needs and iterations of
improvements.

This whitepaper will mostly focus on WebSphere Liberty with some references to related/
origin products such as WebSphere Application Server (WAS) and some utilities built around
application migration and modernization.

Today, Java is still one of the most prominent programming languages used by businesses
world-wide. In fact, PYPL (PopularitY of Programming Language) which is based on data
provided by Google Trends shows that it is the second most popular programming language
(bested by Python due to its wide range of application in the fields of Operating Systems,
Artificial Intelligence, web development and general scripting).

Java is usually written in Integrated Development Environments (IDEs), tools which exist to
simplify development. They provide syntax highlighting, code completion, integration with
several plugins and development tools and much more. Commonly used IDEs for Java are
Eclipse, IntelliJ, Visual Studio Code.

Image 1:
Example of
Visual Studio
Code

p5

1.2.2 Application server versus servlet container

After writing code (.java files), it needs to be compiled to bytecode (.class files) so a JVM (Java
Virtual Machine) can interpret and execute it. Fortunately for us, Java compilers exist for just
such a purpose. IDEs usually provide a compiler, often via the Java Development Kit (JDK) and
most also have a way to run and test the application with an embedded application server or
servlet container.

Once compiled, the application can be packaged along with all necessary resources into a
single file or archive. Several archive types exist, each a subset of the next:

Typically, you choose an archive type based on your choice of application server or servlet
container as well as your needs for EE functionalities and support.
It is however important to note that due to the evolution to microservices, the complexities
and features of a monolithic application are nowadays broken down into smaller,
more manageable parts. Since less features are required to create your application,
you may find more JARs in a microservices landscape.

A common misconception is that an application server (for example IBM’s WebSphere Liberty)
and a servlet container (for example Apache’s Tomcat) are identical.

The biggest difference is that an application server is usually Java EE compliant, which means
it has been approved for running enterprise applications and that it is able to provide all the
EE standardized specifications and functions which have been reviewed meticulously via JSRs
(Java Specification Requests) by the Java community. These standardized components are also
rigorously tested to make sure they can work in parallel or collectively.

Whereas a servlet container (also known as a webcontainer) exists simply to run an
application, it only implements the web component of the EE specified architecture and
cannot provide the other components without having the developers implement them
manually by providing third party libraries.

•	 JAR (A standard Java archive)

•	 WAR (Web archive - Java EE Web Profile specification)

•	 EAR (Enterprise archive - Java EE Full Profile specification)

p6

1.2.3 WebSphere flavors and supporting software

WebSphere Application Server (Traditional or Network Deployment)
WebSphere Application Server Liberty Core
OpenLiberty
WebSphere Liberty

The Websphere family is not limited to the products above, but these are the ones I will focus
on in order to differentiate on their use cases.

The traditional WebSphere Application Server is typically installed on virtual machines as a
standalone or distributed platform. In its distributed form it can span across multiple virtual
machines, collectively referred to as a WebSphere Cell, providing functions like high
availability and such. You can manage all the instances using a Deployment Manager (dmgr)
and deploy applications and configuration to one or several nodes. Operating it may prove
difficult without the necessary training or guides. Assemble a team to govern and maintain
distributed clusters on a wide server landscape.

WebSphere Application Server Liberty Core is a lightweight Liberty-based edition.
With WebSphere Application Server Liberty Core, you can rapidly build and deliver web
applications that do not require the full Java EE stack, since it contains functionalities to
support the Java EE Web Profile which is a smaller subset.

Finally, we arrive at WebSphere Liberty, which is a fully featured application server with a very
small footprint, ideal for developers because it is fast (less than 2 seconds start-up time thanks
to a modular approach) and easy to use. Production-ready because it supports the Java EE full
specification, has high availability, scaling and many other features.
Many quality-of-life features have been added to provide easier integrations with other
development tools. WebSphere Liberty is free to use for development purposes, running it as
a production application server requires a license.

p7

1.2.4 Accelerating and evolving

Harder, better, faster, stronger: this is how tomorrow’s applications are built. My apologies for
(mis)quoting Daft Punk but they were spot on. The demands for building applications which
are robust, secure, integrated and fully featured are increasing whilst time-to-market should
be decreased when possible. Crudely put, this goal is simply unattainable when using the
development tools and strategies most companies have been using for the last decade. Hence,
we must accelerate and evolve along with our tools. Liberty can be a part of that solution and
you will find out why in the next chapters.

I highly recommend reading the twelve-factor app methodology as well. Keep in mind that
such changes are not realized in a day, it should be a common and longer-term goal to work
towards. Development, security, operations and all involved parties have to work together
towards it.

https://12factor.net/

p8

CHAPTER 2
-
LIBERTY AT
ITS CORE

p9

2. Core concepts
and capabilities

2.1 Liberty’s purpose

2.2 Evolution to an open project

We already touched base on Liberty’s purpose in the previous chapter; providing an EE full
profile application server which can help improve agility whilst maintaining the quality one
needs and deserve during the development process.

IBM has worked tirelessly on bringing this technology up to the highest standards, testing it
thoroughly and providing it to corporations and consumers.

I have mentioned Liberty is modular, stable and agile and it is long overdue for me to explain
why, in-depth and concrete. Also, try Liberty for yourself to find out if it fits your use case.

As it became more apparent that Liberty was the way to go forward, IBM open sourced the
base source code making everyone able to improve and expand upon it. Open source is not the
route they have chosen for their products in the past. This shows that IBM itself is also evolving
to accelerate. Most products in their catalog have now also been containerized, even the large
software suites.

Download OpenLiberty from https://openliberty.io/ or the WebSphere Liberty development
kit from https://developer.ibm.com/wasdev/websphere-liberty/, the latter built upon the
core OpenLiberty provides.

The difference between OpenLiberty and WebSphere Liberty can be shown with a very
detailed graph, or I could simply say that WebSphere Liberty has mechanisms to set up
clustering, health management and monitoring and introduces a couple of advanced
authentication features such as SAML, OpenID and similar.

https://openliberty.io/
https://developer.ibm.com/wasdev/websphere-liberty/

p10

2.3 Flexible and Modular configuration

Here is said graph either way:

Liberty offers modularity in the form of features (shown in previous graph). Each Liberty server
has a server.xml file which can be used to completely configure the environment.

Some of these features may look familiar because they are in fact part of the official EE
specifications. For example, jms-2.0:

2.3.1 Features

Image 2:
Difference
OpenLiberty
and
Websphere-
Liberty

Image 3:
server.xml to
configure
Liberty server

Image 4:
Wikipedia
source
JMS versions

p11

Other optional features such as the adminCenter-1.0 have been added by IBM to facilitate
certain operations or extend upon the core features. In this case the adminCenter adds a user
interface capable of stopping and starting or even configuring the servers.

Each IBM product has a Knowledge Center and the full and up-to-date feature list
is available here

After adding a feature it stands to reason that one might want to configure some of these
features. This is possible with the server.xml. After adding jdbc-4.2 some configurations are
required: a connection pool to set a minimum and maximum amount of connections as well as
a datasource to connect to. In this example we are connecting to an Oracle database, so we are
also adding an Oracle JDBC driver as library.

Image 5:
adminCenter-1.0
at work.

Image 6:
Code example:
connecting
to an Oracle
database

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_feat.html

p12

If the server.xml is getting rather large, simply split the configuration using XML includes:

This keeps the configurations clean and gives a grouped overview.

Another important thing to keep in mind is that the configuration loaded by the XML files is
dynamically loaded. This means that changing configuration will immediately take effect,
even if the application is running. Adding a new feature will also install it and update the
server configuration on the fly.

Image 7:
Code example:
Configuration
split

Image 8:
Code example:
Configuration
update

p13

After downloading a WebSphere Liberty development kit, whether it be the full EE8 platform
or a stripped-down kernel version, there will be a standard folder structure.
It helps to familiarize with this structure a bit to know where to find things, troubleshoot or
customize the installation.

The bin folder contains a set of binaries or tools used to manage the installation, encode
passwords, create a server or cluster of servers or download additional features.

The clients folder contains client connectors which can be used to connect to the running
server. For example, if you enable the restConnector-1.0 feature you can use the restconnector.
jar in combination with a jmx:rest client such as VisualVM to get information about the JVM or
trigger management operation such as maintenance mode.

Image 9:
Standard folder
structure
WebSphere
Liberty

Image 10:
Bin Folder in
Websphere
Liberty folder
structure

2.3.2 Structure

p14

Add a truststore to the configuration to make this work.

The dev folder contains JAR files and Javadoc which relates to features in Liberty. The JAR files
are provided only for compilation of applications and features.

The lafiles folder contains License Agreement information.

The lib folder contains the actual platform runtime environment files.

The templates folder contains a few very basic templates for creating a server or client.

The usr folder is where the magic happens.
Subfolder shared is used for resources which should be shared between all servers.
Subfolder servers is where the actual servers will be. Initially this folder will be empty until the
first server is created by using bin/server create <servername>. Start your server by using bin/
server start <servername>.

A folder will be created which corresponds to the chosen name, with following structure:

Image 11:
VisualVM

Image 12:
Folder structure
of the usr folder

p15

Apps should contain the packaged application (JAR/WAR/EAR).

Dropins allows to literally “drop in” a new version of an application or configuration file.

Logs serves a pretty obvious purpose, messages.log usually being the most interesting one.
We will go deeper into the topic of logging in the troubleshooting chapter.

Messaging contains a couple of files which are used as storage for persistent JMS messages.
These are configurable in the server configuration. Best not to touch any of the files in this fold-
er unless you want to delete them to create an entirely new message store.

Resources contains security-based files. Server identity files and trusted servers are generally
separated using a keystore (identity) and a truststore (trusted servers). There will also be a file
called ltpa.keys here, which the server uses to distribute LTPA tokens. After creating a Liberty
Collective (it is possible to simulate having a clustered setup in a devkit!) there will also be sep-
arate security files for collective identity and collective trust verification.

The workarea is where the server’s work is being done. Best not to touch any of the files here.

The server.env file can be used to set environment variables.
We discussed the server.xml file before, this is where almost everything can be configured:
which features to use, which configuration the features should use, port bindings …

There are 2 files which don’t exist by default, but it might be useful to create them:

allows setting JVM options such as min/max heap size or a
custom garbage collector.

can contain attributes that affect the configuration and ini-
tialization of the runtime core. You may want to disable a
specific engine in order to provide your own. These proper-
ties are not dynamic and are only loaded on server start.

bootstrap.properties

jvm.options

p16

2.4 Stability

In a quickly evolving development landscape, there needs to be a way to logically separate
bleeding edge features which one might want to test, from the stable, production ready appli-
cation builds and application servers.

I have already hinted at most of the pillars providing stability for WebSphere Liberty, but I will
summarize them here and add a few extras.

EE Liberty feature versions correspond to the Java EE specification, so there is no
chance of suddenly using a different version of an implementation.

IBM subjects the code base to thorough testing.

WebSphere Liberty is built upon the OpenLiberty core, this means any changes to
the application server’s code have already been tested and used in OpenLiberty first.

The Liberty repository (https://developer.ibm.com/wasdev/downloads/) holds a
collection of feature versions, snippets and tools one can inject into a project.
Subscribe to the beta repository of features to test the latest features while they are
still under development. By testing beta features and providing feedback or code
fixes, you yourself can contribute to the stability of the product.

Feedback from developers around the world contributes to the expansion and
general stability of the product.

Feedback from enterprise consumers also reaches IBM via the official IBM support
channels. If any defects are found, fixes are slipstreamed into the OpenLiberty core
(if applicable) and/or the WebSphere Liberty code base in the next version.
https://www.ibm.com/support/pages/fix-list-ibm-websphere-application-serv-
er-liberty-continuous-delivery

IBM has a very long track record of creating and maintaining large enterprise application suites
and they aim at providing the same level of premium support for Liberty.

https://developer.ibm.com/wasdev/downloads/
https://www.ibm.com/support/pages/fix-list-ibm-websphere-application-server-liberty-continuous-delivery
https://www.ibm.com/support/pages/fix-list-ibm-websphere-application-server-liberty-continuous-delivery

p17

2.5 Agility and reactivity

Agility comes in many forms and it is not one but the combination of many principles that
makes a development process agile. Having Liberty or OpenLiberty in your toolbox can help
significantly but keep in mind to invest in the processes around it as well.

Intuitive issue tracking, code review and code quality tools, automated unit and integration
tests (and other), security and vulnerability checks, pipelines which facilitate the build process,
semantic versioning, release and deploy processes are all very important in today’s agile
approach.

Liberty starts up within 2 seconds which is great, but not enough to make our process agile
and reactive, so let’s take a look at what we can do to speed up our development process.

IBM has built several plugins and extensions for IDEs out there. At their core, all of them allow
running freshly developed code on Liberty or OpenLiberty from within the IDE, instantly
allowing access to an application and to see the results of changes made.

In the last years, some of these plugins have gained some amazing features. The Open Liberty
Tools extension in Visual Studio code for example can now run tests and debug an application
while running the application on an embedded server. Whether it be a more traditional JEE
application or a microservice does not matter, support for both is built-in.

Creating additional tests will automatically compile the new test and it will be available for the
next test run. Add the -DhotTests=true parameter to enable hot testing and
run tests automatically after every change.

p18

There is also a Maven plugin, called liberty-maven-plugin, which can start up an embedded
Liberty in dev mode, enabling to live test changes. Under the hood the plugin listens for
changes made in a Java or configuration file and updates or recompiles it. Pressing ‘Enter’ while
in dev mode can also run tests on demand. Meanwhile, since the server supports dynamic
loading, changing or adding features or even making changes to Maven dependencies imply
works without having to restart the embedded server.

Similarly, enable hot debugging which, after putting breakpoints in the code, allows to pausing
when a specific line of code is reached in the application running inside the embedded Liberty.
This way values can be inspected step by step.

Image 13:
Add a breaking
point

Image 14:
Attaching the
debugger to
the embedded
server

p19

2.6 Security

2.7 Upgrades and migrations

Common Vulnerabilities and Exposures (CVE) which impact Liberty’s security, are reviewed and
patched in the next version. There is a maintained list to track patched CVE’s online.

Next to this, you can subscribe to IBM’s security bulletins. Stay informed, stay safe.

Passwords in the XML configuration can be encoded using the securityUtility provided
in each Liberty server’s bin folder.

Starting 2016 WebSphere Liberty changed from a traditional release model which was linked
to WebSphere Application Server (Traditional or Network Deployment) to a decoupled
continuous release model (initially version 16.0.0.2) with OpenLiberty at its core.
The first number of each version corresponds to the year of the release, while the
last number used to correspond to the release quarter. Nowadays the continuous model
releases even more swiftly and the last number corresponds to the month of the release.
(year.0.0.month).

WebSphere Liberty fix list:
https://www.ibm.com/support/pages/fix-list-ibm-websphere-applica-
tion-server-liberty-continuous-delivery
The fix list includes which bugs and CVEs have been patched.

WebSphere Liberty changelog:
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.
ibm.websphere.wlp.doc/ae/rwlp_newinrelease.html
The changelog includes which new features have been added.

https://www.ibm.com/support/pages/node/710969
https://www.ibm.com/support/pages/node/718119
https://www.ibm.com/support/pages/fix-list-ibm-websphere-application-server-liberty-continuous-delivery
https://www.ibm.com/support/pages/fix-list-ibm-websphere-application-server-liberty-continuous-delivery
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_newinrelease.html

p20

2.8 Cloud native

Liberty has a rich set of features which have been added to support cloud native development:

jakartaee-8.0 (notes on the future of Java)
microProfile: The Eclipse MicroProfile (MP) project is an open collaboration between
developers, the community, and vendors to create a programming model for microservice
applications which is complementary to JEE.

mpConfig: The MicroProfile Config API enables application configuration properties
from multiple sources to be amalgamated into a single set of configuration properties
and accessed by using a single client API. Different sources of configuration properties
can be given different priorities. Higher priority sources can then override property val-
ues from lower priority sources. Allows for a library or application developer to pack-
age code with associated configuration settings that can then be overridden during
application assembly, installation, or at runtime in response to events.

mpFaultTolerance: Aimed at increasing robustness for the application and others
communicating with it. Contains the following mechanisms:

mpHealth: Allows easily adding Liveness and Readiness probes, which are
specifications needed to ensure the health and operability of a microservice.

mpOpenTracing: Enable and customize tracing of JAX-RS and non-JAX-RS
methods. When fed to a distributed tracing system, a complete picture of each call
can be traced from start to finish: how long it took, which endpoints where used
(across multiple microservices implementing this specification), diagnose problems
and assess load distribution across a microservice landscape.

mpOpenAPI: OpenAPI provides a language-agnostic interface for both humans and
computers. When properly defined, a consumer can understand and interact with the
remote service with a minimal amount of implementation logic. An OpenAPI definition
can then be used by documentation generation tools to display the API, code gener-
ation tools to generate servers and clients in various programming languages, testing
tools, and has many other use cases.

mpMetrics: Provides a /metrics REST interface. Developers can add their own custom
metrics using the MicroProfile metrics API alongside the metrics provided by Liberty.

Timeout: Define a duration for timeout
Retry: Define a criteria on when to retry
Fallback: provide an alternative solution for a failed execution.
CircuitBreaker: offer a way of fail fast by automatically failing execution to
prevent the system overloading and indefinite wait or timeout by the clients.
Bulkhead: isolate failures in part of the system while the rest part of the
system can still function.

https://docs.google.com/document/d/1Ea4_bp3cD66d9orNV_yMUpUxUsD0Epnl/edit#heading=h.147n2zr
https://download.eclipse.org/microprofile/
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_microprofile_appconfig.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_microprofile_fault_tolerance.html
https://github.com/OpenLiberty/guide-microprofile-health
https://github.com/eclipse/microprofile-opentracing/
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_mpopenapi.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_mp_metrics_monitor.html

p21

mpRestClient: Create type-safe REST services

mpJwt: Build and consume JSON Web Token (JWT) tokens, which can be used to
propagate user identity or tokens.

mpReactiveStreams: Reactive Streams Operators provide flow control and elegant
error handling when subscribing to and processing streams of events (Publisher,
Subscriber, Subscription and Processor interfaces).

mpReactiveMessaging: Reactive Messaging provides an easy way to send and receive
messages within and between microservices using Kafka message brokers.

mpContextPropagation: CompletionStage and CompletableFuture (SE8) enable
chaining together pipelines of dependent actions, where execution of each
dependent stage is triggered by the completion of the stage(s) upon which that stage
depends. Context Propagation enhances the concurrency capabilities for dependent
stages that run with predictable thread context regardless of which thread the
completion stage action ends up running on.

For these and other features exists a bunch of how-to guides with code snippets:
https://openliberty.io/guides/

IBM has also shown love for developers who use Spring Boot to create their applications. With
the springBoot-2.0 feature, developers can easily embed OpenLiberty instead of the default
Tomcat and build a Docker container.

Image 15:
IBM’s
springBoot-2.0
feature

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_mp_restclient.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_json.html
https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html#mpreactive
https://openliberty.io/blog/2019/09/13/microprofile-reactive-messaging-19009.html#mpreactive
https://openliberty.io/blog/2019/08/16/microprofile-context-propagation-19008.html#mcp1
https://openliberty.io/guides/

p22

Logs are the first things to verify when things go wrong.
Inside the logs folder there are multiple files so let’s go over them.

console.log - This file contains the redirected standard output and standard error streams from
the JVM process. The logging component writes major events to the standard output stream
and errors to the standard error stream when using the default consoleLogLevel configuration.
The standard output and standard error streams always contain messages that are written
directly by the JVM process, such as -verbose:gc output.

messages.log - This file contains all messages that are written or captured by the logging
component. All messages that are written to this file contain additional information such as the
message timestamp and the ID of the thread that wrote the message. This file does not contain
messages that are written directly by the JVM process.

trace.log - This file contains all messages that are written or captured by the logging
component and any additional trace. This file is created only after enabling additional trace.
This file does not contain messages that are written directly by the JVM process.

 
Within this folder there could also be an ffdc (First Failure Data Capture) folder, this feature
preserves the information that is generated from a processing failure and returns control to the
affected engines. FFDC entries are datetime-stamped and only hold non-applicative errors. An
FFDC entry can then be provided to a tech-savvy person or to IBM support for analysis.

Configuring specific traces can be done via the server.xml (or includes) as such:
<logging traceSpecification=”com.example.package.*=finest”/>

The configurable log levels are off, fatal, severe, warning, audit, info, config, detail, fine, finer,
finest, all.

You can specify multiple traces by separating them using “:” (colon) as delimiter:
<logging traceSpecification=”com.example.package.model.*=fine: com.example.package.service.
login.*=audit”/>

One can enable audit logging. These logs are encrypted and signed and can be decrypted and
unsigned using the auditUtility in combination with the correct keys.

2.9 Troubleshooting
2.9.1 Logging

Note: since both console.log and messages.log will both capture standard output and
error, one might struggle with disk space when running the server for a long time with a high
amount of logging. Especially because console.log, which is more of a system log, cannot
be configured as a rotating log. Messages.log however can be configured much more fine
grained, plus it contains timestamps for standard output/error which is nice while analyzing
them. One way to mitigate this, is to set copySystemStreams to false. This way, important
JVM logs will still be kept in console.log, but it will not grow very large over time due to
standard out/error logging and there will still be standard output/error in messages.log.

p23

The timedOperations-1.0 feature can help troubleshoot JDBC operations running in the
application server. This feature periodically (configurable) generates a report that contains the
10 longest JDBC calls. Using a server dump (see 2.1.9.5) will also generate this report.

The eventLogging-1.0 feature can show all the application context requests and total time it
took to receive, execute and respond. Each request has a unique request ID and the context
information that helps the user to understand the request-specific data. Enabling this feature
can generate overhead because it can be a lot of extra information that needs to be fetched
and logged.

The requestTiming-1.0 feature can detect requests which are slow or stuck.
Slow requests: When a request runs for longer than it was configured (default 10s), a warning
message is written in the messages log file.

2.9.2 Slow JDBC calls

2.9.3 Context requests

2.9.4 Slow and hung requests

Image 16:
eventLogging-
1.0 feature

Image 17:
requestTiming-
1.0 feature

p24

Hung request: If the request exceeds the configured threshold value (default 10m), details
about the request and events that made up the request are captured. For a hung request
detection, a series of three thread dumps (javacores) is taken with a 1-minute delay between
them. The following log message sample shows the log messages for a request that crossed
the hung request detection threshold.

Image 18:
hung
request

Server dumps can be very helpful in analyzing problems otherwise not easily identified, such as
memory leaks, deadlocks, hung threads and similar problems. IBM support might also request
one for analysis.

There are different kinds of information collection sets (=dumps) available. When a server
crashes, it might already create a relevant one in the server directory using default settings.
IBM also provides a command line option to generate one on demand.

Firstly, Java has specific types of dumps available:

A thread dump collects information about the state of all threads that are part of the running
process. The “stack” of each thread at the time of the snapshot will be collected in a readable
format. Some threads will be those of the running application(s), some will be those of the JVM
or internal components. Note that Liberty has a self-tuning threadpool and in most cases there
is no need to customize it. Gather this information when experiencing deadlocks, performance
issues or hung threads.

A heap dump collects information about the Java memory heap. This snapshot contains
information on the objects in the stack like object types, object sizes, their values and memory
allocations. A heap dump is automatically generated when running out of memory.
Gather this information when experiencing OutOfMemory exceptions, memory leaks or
abnormal object/heap growth.

2.9.5 Server dumps

2.9.5.1 Types and categories

https://openliberty.io/blog/2019/04/03/liberty-threadpool-autotuning.html

p25

Be advised: There are some risks involved for your environment when creating a heap dump so
it is important to understand what happens: assuming there are memory problems, chances are
that the maximum Java heap (- Xmx) has been reached. To create a snapshot of this memory,
the operating system must load it in memory (outside the JVM heap) in order to write it to disk.
Depending on the size of the application’s max heap (- Xmx), the OS will need (apart from its
usual functions) sufficient memory to process this and sufficient disk space to create the file.

In short, provide extra memory and disk space scaling equally with Xmx to create heap dumps.

A system dump, also known as a core dump, typically contains information about the system
itself. In case of Liberty, information about the kernel and runtime, all its components, configu-
rations, libraries and resources are included. A core dump is also automatically generated when
the process ends abnormally.

Be advised: system dumps can be very large on disk because they include the complete pack-
aged runtime. If there is not enough disk space, many processes will stop functioning correctly.

If there is not enough memory for the OS’s core functions, it might decide to kill a
process which consumes a large amount of memory, like the application server or
the process performing the heap dump.

If there is not enough disk space, many processes will stop functioning correctly.

IBM has chosen to split the creation of dump files on demand into 2 categories:

1. The JVM snapshot creates a javacore file. Javacore files are specifically created and formatted
for debugging purposes and mostly contain information to mitigate specific types of problems
such as 100% CPU usage, crashes, performance problems or memory problems. Javacores are
typically not very large but contain useful information about the JVM, the environment, loaded
libraries, locks and garbage collection.
They can be generated automatically or generated:

Include heap and/or system dumps with the --include=heap,system option.

The server snapshot is mostly used for server-related problems because it contains server
configuration, logs, includes the server’s work area and some information about the deployed
application.

Include thread, heap and/or system dumps with the --include=thread,heap,system option.

2.9.5.2 Generating server dumps

Image 19:
Code example:
generating
Javacores

Image 20:
Code example:
server dump

p26

Analyzing the generated files can be difficult depending on the type and knowledge of the
subject.
To analyze thread dumps, it helps to have knowledge of how threads and executors work.
To analyze heap dumps, it helps to know how object hierarchy works and how they interact.

In addition, for both of the above cases, knowing the application helps a lot. Specifically,
knowing which threads and objects are created under which circumstances, their places in the
hierarchy and expected values can help identify problems faster.

Heap dumps can be loaded into external tools such as IBM’s Heap analyzer or
Eclipse’s Memory Analyzer for further inspection.

To analyze system or core dumps, provide them to IBM support and they will provide feedback
on the encountered issues.

2.9.5.3 Analysis

The default error codes can be found on this page. Most of the time additional messages will
be shown along with the error codes in the console log so there will be no need to search for
them here.

2.9.6 Error codes

https://www.ibm.com/support/pages/ibm-heapanalyzer
https://www.eclipse.org/mat/
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_messages.html

p27

CHAPTER 3
-
LIBERTY
TODAY

p28

3. Liberty today
3.1 Use cases
There are several ways to use Liberty, OpenLiberty or WebSphere Liberty:

embedded in an IDE to speed up the development process
on standalone or distributed (=Liberty Collective, this is a paid feature) servers.
in docker containers
on container platforms
on any Cloud provider
using build packs
in pipelines
…

Liberty, due to its quick startup time, dynamic loading capabilities and low overhead is an ideal
application server to run in containers.

On Dockerhub there are container images for OpenLiberty as well as container images for
WebSphere Liberty (Ubuntu + IBM jdk). The latter has specific arguments to enable enterprise
capabilities (for which a license is needed). If one aims at creating enterprise software to run on
a production container platform, I advise using the container images for WebSphere Liberty
on the Red Hat Universal Base Image (UBI).

Instructions on how to build an application container with these images are included:
https://github.com/openliberty/ci.docker#building-an-application-image
The OpenLiberty guides are also a great way of learning how to leverage certain cloud-native
features within Liberty.

Ideally a container runs on top of a Kubernetes certified container platform. IBM generally
recommends using RedHat Openshift (OCP) with an additional Cloud Pak installed.

Several integrations are compatible or built for WebSphere Liberty or OpenLiberty.
In this chapter, we will discuss the most common use cases.

3.1.1 Containers

https://hub.docker.com/r/openliberty/open-liberty
https://hub.docker.com/_/websphere-liberty/
https://hub.docker.com/_/websphere-liberty/
https://hub.docker.com/r/ibmcom/websphere-liberty/
https://hub.docker.com/r/ibmcom/websphere-liberty/
https://github.com/openliberty/ci.docker#building-an-application-image
https://openliberty.io/guides/

p29

3.2 Pak’ed up
IBM has introduced several products called Cloud Paks for large enterprises wanting to move
to a Kubernetes based cloud, on-premise or hybrid solution. Using Red Hat Openshift as core
Kubernetes platform, these Paks can be installed on top of the container platform and enable
additional tools, operators or interfaces. Licenses for running IBM software on OpenShift are
covered through the Paks.

IBM Cloud Pak for Multicloud Management
Helps to provide consistent visibility, automation, and governance across a range of hybrid,
multicloud management capabilities such as event management, infrastructure management,
application management, multicluster management, edge management and integration with
existing tools and processes.
Improve cloud visibility, governance and automation

IBM Cloud Pak for Integration
Helps support the speed, flexibility, security and scale required for all of your integration and
digital transformation initiatives and comes pre-integrated with a set of capabilities including
API lifecycle, application and data integration, messaging and events, high speed transfer and
integration security.
Integrate app, data, cloud services and APIs

IBM Cloud Pak for Automation
Helps you deploy on your choice of clouds anywhere Kubernetes is supported, with low-code
tools for business users and real-time performance visibility for business managers. Customers
can migrate their automation runtimes without application changes or data migration, and
automate at scale without vendor lock-in.
Transform business process, decisions and content

IBM Cloud Pak for Applications
Helps to accelerate the build of cloud-native apps by leveraging built-in developer tools and
processes, including support for microservices functions and serverless computing. Custom-
ers can quickly build apps on any cloud, while existing IBM middleware clients gain the most
straightforward path to modernization.
Build, deploy and run applications

IBM Cloud Pak for Data
Helps to unify and simplify the collection, organization and analysis of data. Enterprises can
turn data into insights through an integrated cloud-native architecture. IBM Cloud Pak for Data
is extensible, easily customized to unique client data and AI landscapes through an integrated
catalog of IBM, open source and third-party microservices add-ons.
Collect, organize and analyze data

https://www.ibm.com/cloud/cloud-pak-for-management
https://www.ibm.com/cloud/cloud-pak-for-integration
https://www.ibm.com/cloud/cloud-pak-for-automation
https://www.ibm.com/cloud/cloud-pak-for-applications
https://www.ibm.com/products/cloud-pak-for-data

p30

IBM Cloud Pak for Security
IBM Cloud Pak for Security is a platform that helps you uncover hidden threats, make more
informed risk-based decisions and prioritize your team’s time. Connect to your existing data
sources to generate deeper insights. Securely access IBM and third-party tools to search for
threats across any cloud or on-premises location. Quickly orchestrate actions and responses to
those threats.
Gain security insights, respond faster to threats

At the time of writing, 2 Cloud Pak Systems (actual server racks) exist as well:

IBM Cloud Pak System
An integrated system of hardware and software optimized to build, deploy and manage Cloud
Paks and Kubernetes workloads in your data center. Configure in less than a day.
Five IBM Cloud Paks cover key workloads on your journey to the cloud. For rapid deployment,
use the IBM Cloud Pak System

IBM Cloud Pak System for Data
True plug-and-play for enterprise data and AI in hours, right out of the box
Accelerate your journey to AI to transform how your business operates with an open,
extensible platform that runs on any cloud

Depending on your needs, one or more of these Cloud Paks/Systems are sure to cover them.
The Cloud Pak for Applications would be the most appropriate one for standard Java EE on
Liberty.

Unrelated to Cloud Paks, a buildpack is a technology that provides framework and runtime
support for applications. Buildpacks typically inspect an application and determine which
dependencies and which integrations are necessary to communicate with services.

Developer oriented PaaS solutions like Cloud Foundry have been offering buildpacks for quite
some time and they have been accepted as an official cloud native technology since 2018
https://buildpacks.io/

I mention them because IBM uses Cloud Foundry inside IBM Cloud and a buildpack to run
WebSphere Liberty on Cloud Foundry is generally available. Thanks to the integration with
Cloud Foundry and buildpacks, simply “cf push” an application to IBM Cloud and watch it
unfold, making it excellent at accelerating development. Infrastructure is abstracted in this
model and while this may be a blessing during development, it could be a curse when more
control or testing is needed from an infrastructure perspective.

3.3 Buildpacks

DISCOVER IBM CLOUD PAKS

https://www.ibm.com/products/cloud-pak-for-security
https://www.ibm.com/cloud/cloudpaksystem
https://www.ibm.com/products/cloud-pak-for-data
https://www.ibm.com/products/cloud-pak-for-data
https://www.ibm.com/cloud/cloud-foundry
https://buildpacks.io/
https://github.com/cloudfoundry/ibm-websphere-liberty-buildpack
https://github.com/cloudfoundry/ibm-websphere-liberty-buildpack
https://www.flowfactor.be/ibm-cloud-pak-paper/
https://www.flowfactor.be/contact/#contactrow

p31

3.4 Pipeline integrations

3.5 Integration with existing software

The concept of pipelines aims at creating an end-to-end software building and delivery
system. Other aspect can easily be included in this same process: code review, security
vulnerability checking, automated testing, automatically applying release models
and much more.

The liberty-maven-plugin could help automate certain tasks before or after running a build.
For example, the process might include deploying packaged code to a development server
and running integration or smoke tests. The aforementioned plugin in combination with others
readily available in most pipeline software should be able to help automate this.

On top of the usual integrations you may find within application servers such as datasource
compatibilities, IBM has created several other features outside of the EE specification which
can make life easier. Want to centralize your logging? Use the Logstash collector feature,
part of the ELK stack (Elasticsearch – Logstash – Kibana) to send it to an existing cluster.

Most necessary features are readily available but you can also extend or develop features
from the ground up.

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_feat_develop.html

p32

CHAPTER 4
-
CLOSING
NOTES

p33

4. Closing notes

4.1 Notes on the future of Java and Liberty
Lots of interesting stuff on the horizon in the Java landscape. We are heading into an era with
a new kind of EE specification, namely JakartaEE (which is named after the capital of Indonesia,
same as Java was named after coffee which originated from Indonesia), which is now open
source and will focus on cloud native development. Serving as a baseline, the JakartaEE
Platform 8 has already been released and Platform 9 is under development.
The goal of the Jakarta EE 9 release is to deliver a set of specifications functionally like Jakarta
EE 8 but in the new Jakarta EE 9 namespace jakarta.*.

In addition, the Jakarta EE 9 release removes specifications from Jakarta EE 8 that were old,
optional, or deprecated in order to reduce the surface area of the APIs to ensure that it is
easier for new vendors to enter the ecosystem – as well as reduce the burden on
implementation, migration, and maintenance of these old APIs.

My personal assumption is that in the Jakarta spec, we will also find a faster paced release
model making the effort of moving to newer EE specifications smaller and less intrusive for
development teams. I am also confident that the OpenJDK (+ OpenJ9) will be become the
new standard development kit instead of the long running Oracle JDK (+ hotspot) due to a
plethora of reasons.

Despite or because of its decline in the list of top programming languages we are seeing many
changes which may once again make, or enforce making, Java our weapon of choice.

With a continuous release model, cloud native support, Java EE and JakartaEE certifications,
Liberty is a very good platform to use for our Java applications. Due to the stacked open
source contributions with IBM enterprise support I think it can only grow faster and stronger.

https://www.eclipse.org/openj9/performance/

p34

4.2 About the author
I am mostly hoping this whitepaper was interesting and of some use to you.

Unlike most IT professionals, I am not specialized in any specific field. Being an IT-generalist has
helped me and customers I’ve worked for greatly in the past. My interests lie in many fields
and while it is difficult to maintain knowing a bit about everything,
I would not change it for the world.

I currently work as a DevOps engineer at FlowFactor,
a company providing automation, DevOps services and Managed Services (24/7). FlowFactor is
a Cronos Group subsidiary and an IBM platinum business partner.

-
Stefaan De Geyter

Are you ready to start your modernization
journey with FlowFactor?

LET’S TALK!

Telefoon

Email

Website

Adres

32 (0) 496 57 41 98

hello@flowfactor.be

www.flowfactor.be

Veldkant 33a
2550 Kontich

EXPLORE IBM CLOUD PAKS

https://www.flowfactor.be/
https://cronos-groep.be/en/
mailto:stefaan.degeyter%40flowfactor.be?subject=
mailto:hello%40flowfactor.be?subject=
https://www.flowfactor.be/
https://www.flowfactor.be/ibm-cloud-pak-paper/

